The main goal for the transport sector is to completely abandon fossil fuels. One well-functioning approach is electric mobility. Hydrogen-powered systems can complement this technology. In this case, hydrogen is either used to power an internal combustion engine or is converted to electricity via a fuel cell. Hydrogen-powered vehicles have multiple advantages over electric vehicles. For example, their operating range is between 400 and 750 km, larger than any current electric vehicle, and it only takes 3 to 4 minutes to refuel. Hydrogen as a direct and indirect fuel When hydrogen is used directly in fuel cell vehicles, the three main considerations are efficiency, safety, and reliability. Many countries are working toward developing a cost-effective and reliable measurement and control concept. This ensures that the system reaches its optimal operating parameters quickly and accurately. Researchers are also optimizing the fuel cell load management system and working to improve economy, efficiency, and durability. Az üzemanyagcella fordított elektrolízisnek nevezett folyamatot használ. Az elektrolízis oxigénre osztja a vízmolekulát termel és hidrogént. A fordított elektrolízis ennek az ellenkezőjét teszi. Az üzemanyagcellát a jármű tartályaiból táplálják a hidrogén üzemanyaggal. Ezután oxigént adnak hozzá a környezeti levegőből. Ennek a kombinációnak a reakciója a víz, a hő és az elektromos energia. A vízgőzként szabadul fel az FCEV kipufogóján keresztül. Az áramot az akkumulátor fedélzeti töltésére (csúcsteljesítmény-akkumulátorra) és az elektromos motor táplálására használják. Ennek eredményeként ezek a járművek működésükből nem termelnek üvegházhatásúgáz-kibocsátást. Bár ebben az esetben is akkumulátorról van szó ami meghajtja a motort, annak mérete lényegesen kisebb és könnyebb, mint az a típus, amelyet egy elektromos autó meghajtására használnak. Az ok, amiért nem kell olyan nagynak lennie, az, hogy az üzemanyagcella folyamatosan feltölti. A hidrogénmotorok, mint például a BEV-k, szintén visszanyerhetik a fékenergiát. Ez lehetővé teszi a motor számára, hogy a jármű mozgási energiáját elektromos árammá alakítsa át, amelyet a Csúcsenergia-akkumulátor feltöltésére használnak.http://hh2.hu/wp-content/uploads/2022/03/hidrogen_mukodese.mp4 Fuel cells use a process called reverse electrolysis. Electrolysis breaks down the water molecule into oxygen and hydrogen. Reverse electrolysis does the opposite. The fuel cell is supplied with hydrogen fuel from the tanks of the vehicle. Oxygen is then added from the ambient air. Reaction of hydrogen and oxygen produces water, heat, and electricity. It is released as water vapors through the exhaust of the FCEV. Power is used to charge the battery onboard (peak power battery) and to power the electric motor. As a result, the operation of these vehicles does not emit any greenhouse gases. Although this is also a battery that drives the engine, it is significantly smaller and lighter than the types used to power an electric car. The reason is owing to the continuous refilling, the size of fuel cell can remain small. Hydrogen engines, such as BEVs, can also recover braking energy. Regenerative braking is an energy recovery mechanism that slows down a moving vehicle, and allows the engine to convert the kinetic energy of the vehicle into electrical current. This electric current is used to charge the Peak Energy Battery. As a result, the electric traction motor uses the momentum of the vehicle to recover energy, which would otherwise be lost to the brake discs as heat. Fuel cells, like alkaline cells, generate electricity directly by the electrochemical reaction. One main difference is that while the batteries get unusable after they are depleted, fuel cells operate until the fuel supply is provided. Fuel cells are electrochemical devices in which the chemical energy of the fuel (primarily hydrogen, or others for certain cell types, e.g., methanol, ethanol, biogas, etc.) is directly converted to electrical energy while heat is generated. Fuel cells usually consist of two electrodes (anode and cathode) and the electrolyte between them. With the help of a catalyst (usually platinum), hydrogen molecules decompose first into hydrogen atoms and then into protons and electrons. Protons travel through the electrolyte and electrons can flow in an external circuit. Assisted by the catalyst, electrons arriving at the cathode combine with protons and oxygen to form water. The performance of a given cell is usually small, e.g., for use in vehicles. To overcome this issue, cells are connected in series, arranged in so-called fuel cell stacks.OTHER SOLUTIONS  Instead of using hydrogen to power fuel cell vehicles, gaseous hydrogen can also be used as a platform chemical to produce liquid fuels via methanol to produce oxymethyl dimethyl ethers (OMEs). Burning these fuels results in low levels of pollution and can reduce greenhouse gas emissions by up to 90% relative to a suitable wheel-to-wheel fossil fuel. Like ethanol, as an additive to gasoline, OMEs can be blended with diesel fuels to produce blended fuel. This type of power-fluid process makes sense primarily for applications, where hydrogen cannot be used to power the propulsion system, like in waterborne transport and aviation.